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The how-to of Bayesian inference

3.1 Overview

The first part of this chapter is devoted to a brief description of the methods and
terminology employed in Bayesian inference and can be read as a stand-alone intro-
duction on how to do Bayesian analysis.' Following a review of the basics in Section
3.2, we consider the two main inference problems: parameter estimation and model
selection. This includes how to specify credible regions for parameters and how to
eliminate nuisance parameters through marginalization. We also learn that Bayesian
model comparison has a built-in “Occam’s razor,” which automatically penalizes
complicated models, assigning them large probabilities only if the complexity of the
data justifies the additional complication of the model. We also learn how this penalty
arises through marginalization and depends both on the number of parameters and
the prior ranges of these parameters.

We illustrate these features with a detailed analysis of a toy spectral line problem
and in the process introduce the Jeffreys prior and learn how different choices of priors
affect our conclusions. We also have a look at a general argument for selecting priors
for location and scale parameters in the early phases of an investigation when our state
of ignorance is very high. The final section illustrates how Bayesian analysis provides
valuable new insights on systematic errors and how to deal with them.

I recommend that Sections 3.2 to 3.5 of this chapter be read twice; once quickly,
and again after seeing these ideas applied in the detailed example treated in Sections
3.6to3.11.

3.2 Basics

In Bayesian inference, the viability of each member of a set of rival hypotheses, { H,}, is
assessed in the light of some observed data, D, by calculating the probability of each
hypothesis, given the data and any prior information, /, we may have regarding the

! The treatment of this topic is a revised version of Section 2 of a paper by Gregory and Loredo (1992), which is
reproduced here with the permission of the Astrophysical Journal.
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42 The how-to of Bayesian inference

hypotheses and data. Following a notation introduced by Jeffreys (1961), we write

such a probability as p(H;|D, I), explicitly denoting the prior information by the

proposition, /, to the right of the bar. At the very least, the prior information must

specify the class of alternative hypotheses being considered (hypothesis space of inter-

est), and the relationship between the hypotheses and the data (the statistical model).
The basic rules for manipulating Bayesian probabilities are the sum rule,

p(Hi|I) + p(Hi|I) =1, (3.1

and the product rule,

p(H;, DII) = p(H,|Dp(D|H;, T) (3.2)
=p(D|I)p(H,|D,I). |

The various symbols appearing as arguments should be understood as propositions;
for example, D might be the proposition, “/N photons were counted in a time 7.” The
symbol H; signifies the negation of H; (a proposition that is true if one of the
alternatives to H; is true), and (H;, D) signifies the logical conjunction of H; and D
(a proposition that is true only if H; and D are both true). The rules hold for any
propositions, not just those indicated above.

Throughout this work, we will be concerned with exclusive hypotheses, so that if
one particular hypothesis is true, all others are false. For such hypotheses, we saw in
Section 2.5.3 that the sum and product rules imply the generalized sum rule,

p(H; + Hj|I) = p(H;|I) + p(H}|I). (3.3)

To say that the hypothesis space of interest consists of # mutually exclusive hypotheses
means that for the purpose of the present analysis, we are assuming that one of them is
true and the objective is to assign a probability to each hypothesis in this space, based
on D,I. We will use normalized prior probability distributions, unless otherwise
stated, such that

> p(HID=1. (3.4)

1

Here a “4” within a probability symbol stands for logical disjunction, so that
H; + H; 1s a proposition that is true if either H; or H; 1s true.

One of the most important calculating rules in Bayesian inference is Bayes’ theorem,
found by equating the two right hand sides of Equation (3.2) and solving for p(H;|D, I):

p(Hill)p(D|H, I)
p(DII)

p(Hi|D,I) = 3.5)
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Bayes’ theorem describes a type of learning: how the probability for each member of
a class of hypotheses should be modified on obtaining new information, D. The
probabilities for the hypotheses in the absence of D are called their prior probabilities,
p(H;|I), and those including the information D are called their posterior probabilities,
p(H;|D,I). The quantity p(D|H;,I) is called the sampling probability for D, or the
likelihood of H;, and the quantity p(D|I) is called the prior predictive probability for D,
or the global likelihood for the entire class of hypotheses.

All of the rules we have written down so far show how to manipulate known
probabilities to find the values of other probabilities. But to be useful in applications,
we additionally need rules that assign numerical values or functions to the initial direct
probabilities that will be manipulated. For example, to use Bayes’ theorem, we need to
know the values of the three probabilities on the right side of Equation (3.5). These
three probabilities are not independent. The quantity p(D|I) must satisfy the require-
ment that the sum of the posterior probabilities over the hypothesis space of interest is
equal to 1.

>.ip(Hil)p(D|Hi, T) _
p(DII)

> _p(Hi{D.I)= 1. (3.6)

Therefore,

p(DI) =) p(Hi|Dp(D|H;, 1. (3.7

That is, the denominator of Bayes’ theorem, which does not depend on H;, must be
equal to the sum of the numerator over H;. It thus plays the role of a normalization
constant.

3.3 Parameter estimation

We frequently deal with problems in which a particular model is assumed to be
true and the hypothesis space of interest concerns the values of the model
parameters. For example, in a straight line model, the two parameters are the
intercept and slope. We can look at this problem as a hypothesis space that is
labeled, not by discrete numbers, but by the possible values of two continuous
parameters. In such cases, the quantity of interest (see also Section 1.3.2) is a
probability density function or PDF. More generally, ‘PDF’ is an abbreviation for
a probability distribution function which can apply to both discrete and contin-
uous parameters. For example, given some prior information, M, specifying a
parameterized model with one parameter, 6, p(6|M) is the prior density for 6,
which means that p(0|M)df is the prior probability that the true value of the
parameter is in the interval [0,60 + df]. We use the same symbol, p(...), for prob-
abilities and PDFs; the nature of the argument will identify which use is intended.



44 The how-to of Bayesian inference

Bayes’ theorem, and all the other rules just discussed, hold for PDFs, with all sums
replaced by integrals. For example, the global likelihood for model M can be calcu-
lated with the continuous counterpart of Equation (3.7),

p(D|M) = / do p(0)M)p(D|0, M) = L(M). (3.8)

In words, the global likelihood of a model is equal to the weighted average likelihood
for its parameters. We will utilize the global likelihood of a model in Section 3.5 where
we deal with model comparison and Occam’s razor.

If there is more than one parameter, multiple integrals are used. If the prior density
and the likelihood are assigned directly, the global likelihood is an uninteresting
normalization constant. The posterior PDF for the parameters is simply proportional
to the product of the prior and the likelihood.

The use of Bayes’ theorem to determine what one can learn about the values of
parameters from data is called parameter estimation, though strictly speaking,
Bayesian inference does not provide estimates for parameters. Rather, the Bayesian
solution to the parameter estimation problem is the full posterior PDF, p(6|D, M), and
not just a single point in parameter space. Of course, it is useful to summarize this
distribution for textual, graphical, or tabular display in terms of a “best-fit” value and
“error bars.” Possible summaries of the best-fit values are the posterior mode (most
probable value of 0) or the posterior mean,

0) = / d0 0 p(0|D, M). (3.9)

If the mode and mean are very different, the posterior PDF is too asymmetric to be
adequately summarized by a single estimate. An allowed range for a parameter with
probability content C (e.g., C = 0.95 or 95%) is provided by a credible region, or
highest posterior density region, R, defined by

/ do p(6|D, M) = C. (3.10)
R

with the posterior density inside R everywhere greater than that outside it. We some-
times speak picturesquely of the region of parameter space that is assigned a large
density as the “posterior bubble.” In practice, the probability (density function)
p(0|D, M) is represented by a finite list of values, p;, representing the probability in
discrete intervals of 6.

A simple way to compute the credible region is to sort these probability values in
descending order. Then starting with the largest value, add successively smaller p;
values until adding the next value would exceed the desired value of C. At each step
keep track of the corresponding 6; value. The credible region is the range of € that just
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includes all the 6, values corresponding to the p; values added. The boundaries of the
credible region are obtained by sorting these #; values and taking the smallest and
largest values.

3.4 Nuisance parameters

Frequently, a parameterized model will have more than one parameter, but we will
want to focus attention on a subset of the parameters. For example, we may want to
focus on the implications of the data for the frequency of a periodic signal, independent
of the signal’s amplitude, shape, or phase. Or we may want to focus on the implications
of spectral data for the parameters of some line feature, independent of the shape of the
background continuum. In such problems, the uninteresting parameters are known as
nuisance parameters. As always, the full Bayesian inference is the full joint posterior
PDF for all of the parameters; but its implications for the parameters of interest can be
simply summarized by integrating out the nuisance parameters. Explicitly, if model M
has two parameters, # and ¢, and we are interested only in #, then it is a simple
consequence of the sum and product rules (see Section 1.5) that,

(01D, M) = / dé p(9,6|D, M). 3.11)

For historical reasons, the procedure of integrating out nuisance parameters is
called marginalization, and p(6|D, M) is called the marginal posterior PDF for 6.
Equation (3.8) for the global likelihood is a special case of marginalization in which
all of the model parameters are marginalized out of the joint prior distribution,
p(D,6|M).

The use of marginalization to eliminate nuisance parameters is one of the most
important technical advantages of Bayesian inference over standard frequentist sta-
tistics. Indeed, the name “nuisance parameters” originated in frequentist statistics
because there is no general frequentist method for dealing with such parameters; they
are indeed a “nuisance” in frequentist statistics. Marginalization plays a very import-
ant role in this work. We will see a detailed example of marginalization in action in
Section 3.6.

3.5 Model comparison and Occam’s razor

Often, more than one parameterized model will be available to explain a phenomenon,
and we will wish to compare them. The models may differ in form or in number of
parameters. Use of Bayes’ theorem to compare competing models by calculating the
probability of each model as a whole is called model comparison. Bayesian model
comparison has a built-in “Occam’s razor:” Bayes’ theorem automatically penalizes
complicated models, assigning them large probabilities only if the complexity of the
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where Npoq 18 the total number of models considered. Dividing through by p(M,|D, I),
we have

POnD D~ 2 O (3.16)

Comparing Equation (3.16) to the expression for O;;, given by

we have the result that
Oin

p(M|D,]) = ————,
Soimed Oy

(3.18)

where of course O|; = 1. If there are only two models, the probability of M is given by

071 1

M,|D,I) = = .
p( 2| ) 1+021 1+0L2]

(3.19)

In this work, we will assume that we have no information leading to a prior
preference for one model over another, so the prior odds ratio will be unity, and the
odds ratio will equal the Bayes factor, the ratio of global likelihoods. A crucial
consequence of the marginalization procedure used to calculate global likelihoods is
that the Bayes factor automatically favors simpler models unless the data justify the
complexity of more complicated alternatives. This is illustrated by the following
simple example.

Imagine comparing two models: M with a single parameter, 6, and M, with 6 fixed
at some default value 6, (so M, has no free parameters). To calculate the Bayes factor
By in favor of model M, we will need to perform the integral in Equation (3.8) to
compute p(D|M;, I), the global likelihood of M. To develop our intuition about the
Occam penalty, we will carry out a back-of-the-envelope calculation for the Bayes
factor. Often the data provide us with more information about parameters than we
had without the data, so that the likelihood function, £(6) = p(D|0, M, I), will be
much more “peaked” than the prior, p(0|M,,I). In Figure 3.1 we show a Gaussian-
looking likelihood centered at é, the maximum likelihood value of 6, together with
a flat prior for 6. Let Af be the characteristic width of the prior. For a flat prior,
we have that

/ 40 p(0|My, 1) = p(6| My, HAO=1. (3.20)
A0

Therefore, p(0|M,,1) =1/A0.
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Figure 3.1 The characteristic width 66 of the likelihood peak and A#f of the prior.

The likelihood has a characteristic width” which we represent by 6. The character-
istic width is defined by

/ do p(D|0, My, I) = p(DId, My, 1) x 86. (3.21)
AO

Then we can approximate the global likelihood (Equation (3.8)) for M, in the
following way:

p(DIM, 1) = / db p(6| My, Dp(D|6, M. 1) = L(M))

1
— g @ p(DI6. M D

60
Al
: ~ 00
or alternatively, L(M;)~ L(0)—.
A6
Since model M\ has no free parameters, no integral need be calculated to find its
global likelihood, which is simply equal to the likelihood for model M, for 6 = 6y,

p(D|Mo, I) = p(D|6o, My, I) = L(6). (3.23)

(3.22)
’ij(DwAle:I)

Thus the Bayes factor in favor of the more complicated model is

_p(DI6, My 1) 89 L(B) 80

Bio (3.24)

2 If the likelihood function is really a Gaussian and the prior is flat, it is simple to show that 60 = oyv/2n, where oy is the
standard deviation of the posterior PDF for 6.
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The likelihood ratio in the first factor can never favor the simpler model because M
contains it as a special case. However, since the posterior width, 66, is narrower than
the prior width, A6, the second factor penalizes the complicated model for any
“wasted” parameter space that gets ruled out by the data. The Bayes factor will thus
favor the more complicated model only if the likelihood ratio is large enough to
overcome this penalty.

Equation (3.22) has the form of the best-fit likelihood times the factor that penalizes
M. In the above illustrative calculation we assumed a simple Gaussian likelihood
function for convenience. In general, the actual likelihood function can be very com-
plicated with several peaks. However, one can always write the global likelihood of a
model with parameter 6, as the maximum value of its likelihood times some factor, §24:

P(DIM, ) = Linax$. (3.25)

The second factor, €y, is called the Occam factor associated with the parameters, 6.
It is so named because it corrects the likelihood ratio usually considered in statistical
tests in a manner that quantifies the qualitative notion behind “Occam’s razor:”
simpler explanations are to be preferred unless there is sufficient evidence in favor
of more complicated explanations. Bayes’ theorem both quantifies such evidence and
determines how much additional evidence is “sufficient” through the calculation of
global likelihoods.

Suppose M| has two parameters 6 and ¢, then following Equation (3.22), we can
write

p(D|M, 1) = // d0dé p(0\ My, Dp(8| My, Dp(DI6, &, My, 1)

0 o6
AOAG

(3.26)

%P(Dw: ¢2,M171) :‘CmaxQE)QQs.

The above equation assumes independent flat priors for the two parameters. It is clear
from Equation (3.26) that the total Occam penalty, (o1 = 29§24, can become very
large. For example, if 60/ A0 = 6¢/A¢ = 0.01 then Qo1 = 107, Thus for the Bayes
factor in Equation (3.24) to favor M, the ratio of the maximum likelihoods,

p(D|é’ dA)aMlal)
p(D| Mo, I)

max(Ml)
max(MO)

L
- C

must be >10%. Unless the data argue very strongly for the greater complexity of M,
through the likelihood ratio, the Occam factor will ensure we favor the simpler model.
We will explore the Occam factor further in a worked example in Section 3.6.

In the above calculations, we have specifically made a point of identifying the Occam
factors and how they arise. In many instances we are not interested in the value of the
Occam factor, but only in the final posterior probabilities of the competing models.
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Because the Occam factor arises automatically in the marginalization process, its effect
will be present in any model selection calculation.

3.6 Sample spectral line problem

In this section, we will illustrate many of the above points in a detailed Bayesian
analysis of a toy spectral line problem. In a real problem, as opposed to the
hypothetical one discussed below, there could be all sorts of complicated prior
information. Although Bayesian analysis can readily handle these complexities,
our aim here is to bring out the main features of the Bayesian approach as simply
as possible. Be warned; even though it is a relatively simple problem, our detailed
solution, together with commentary and a summary of the lessons learned, will
occupy quite a few pages.

3.6.1 Background information

In this problem, we suppose that two competing grand unification theories have
been proposed. Each one is championed by a Nobel prize winner in physics. We want
to compute the relative probability of the truth of each theory based on our prior
(background) information and some new data. Both theories make definite predic-
tions in energy ranges beyond the reach of the present generation of particle accel-
erators. In addition, theory 1 uniquely predicts the existence of a new short-lived
baryon which is expected to form a short-lived atom and give rise to a spectral line at
an accurately calculable radio wavelength. Unfortunately, it is not feasible to detect
the line in the laboratory. The only possibility of obtaining a sufficient column
density of the short-lived atom is in interstellar space. Prior estimates of the
line strength expected from the Orion nebula according to theory 1 range from 0.1
to 100 mK.
Theory 1 also predicts the line will have a Gaussian line shape of the form

2

Texp {M} (abbreviated by Tf;), (3.27)
207

where the signal strength is measured in temperature units of mK and 7 is the

amplitude of the line. The frequency, v;, is in units of channel number and v, = 37.

The width of the line profile is characterized by o;, and o; = 2 channel numbers. The

predicted line shape is shown in Figure 3.2.

Data:

To test this prediction, a new spectrometer was mounted on the James Clerk Maxwell
telescope on Mauna Kea and the spectrum shown in Figure 3.3 was obtained. The
spectrometer has 64 frequency channels with neighboring channels separated by
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Figure 3.2 Predicted spectral shape according to theory 1.

0.5 0. All channels have Gaussian noise characterized by ¢ = 1 mK. The noise in
separate channels is independent. The data are given in Table 3.1.
Let D be a proposition representing the data from the spectrometer.
D=D,,D,,...,Dy; N=064 (3.28)
where D is a proposition that asserts that “the data value recorded in the first channel

was d;.”
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Figure 3.3 Measured spectrum.
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Table 3.1 Spectral line data consisting of 64 frequency channels (#) obtained with a radio

astronomy spectrometer. The output voltage from each channel has been calibrated in units

of effective black body temperature expressed in mK. The existence of negative values arises
from receiver channel noise which gives rise to both positive and negative fluctuations.

# mK # mK # mK # mK
1 1.420 17 —0.937 33 0.248 49 0.001
2 0.468 18 1.331 34 —1.169 50 0.360
3 0.762 19 —1.772 35 0.915 51 —0.497
4 —1.312 20 —0.530 36 1.113 52 —0.072
5 2.029 21 0.330 37 1.463 53 1.094
6 0.086 22 1.205 38 2.732 54 —1.425
7 1.249 23 1.613 39 0.571 55 0.283
8 —0.368 24 0.300 40 0.865 56 —1.526
9 —0.657 25 —0.046 41 —0.849 57 —1.174
10 —1.294 26 —0.026 42 —-0.171 58 —0.558
11 0.235 27 —-0.519 43 1.031 59 1.282
12 —0.192 28 0.924 44 1.105 60 —0.384
13 —0.269 29 0.230 45 —0.344 61 -0.120
14 0.827 30 0.877 46 —0.087 62 —0.187
15 —0.685 31 —0.650 47 —0.351 63 0.646
16 —0.702 32 —1.004 48 1.248 64 0.399

Question: Which theory is more probable?

Based on our current state of information, which includes just the above prior
information and the measured spectrum, what do we conclude about the relative
probabilities of the two competing theories and what is the posterior PDF for the line
strength?

Hypothesis space:

M, = “Theory 1 correct, line exists”

M, = “Theory 2 correct, no line predicted”

3.7 Odds ratio

To answer the above question, we compute the odds ratio (abbreviated simply by the
odds) of model M, to model M.

p(M1|D7I)

0=
27 p(Ma|D, 1)

(3.29)
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From Equation (3.14) we can write

(Mi|1) p(D|My, 1)
p(Ma|I) p(D| M, 1)
(M, |1)
(M|

S

O =

(3.30)

!
~

B>

S

where p(M|I)/p(M;|I) is the prior odds, and p(D|M,,I)/p(D|M>, ) is the global
likelihood ratio, which is also called the Bayes factor.

Based on the prior information given in the statement of the problem, we assign the
prior odds = 1, so our final odds is given by,

_ p(DIM, 1)

0, =207
* p(DIMy, 1)

(the Bayes factor). (3.31)
To obtain p(D|M;, I), the global likelihood of M, we need to marginalize over its
unknown parameter, 7. From Equation (3.8), we can write

p(DIMy, 1) = / dT p(T\My, Dp(D|My, T, 1). (3.32)

In the following section we will consider what form of prior to use for p(7|M;, ). In
Section 3.7.2 we will show how to evaluate the likelihood, p(D|M, T, ).

3.7.1 Choice of prior p(T|M, 1)

We need to evaluate the global likelihood of model M| for use in the Bayes factor. One
of the items we need in this calculation is p(7| M, I), the prior for 7. Choosing a prior
is an important part of any Bayesian calculation and we will have a lot to say about
this topic in Section 3.10 and other chapters, e.g., Chapter 8, and Sections 9.2.3, 13.3
and 13.4. For this example, we will investigate two common choices: the uniform prior
and the Jeffreys prior.’

Uniform prior
Suppose we chose a uniform prior for p(T|My, ) in the range Tiin < T < Thax

p(TIMy, 1) = (3.33)

1
AT’
where AT = Trax — Twmin-

There is a problem with this prior if the range of 7 is large. In the current example
Timax = 100 and Ty, =0.1. To illustrate the problem, we compare the probability that

3 If the lower limit on 7 extended all the way to zero, we would not be able to use a Jeffreys prior because of the infinity
at 7= 0. A modified version of the form, p(T|M;,1) = 1/{(T+ a) In[(a + Tmax)/a]}, where a is a constant, eliminates
this singularity. This modified Jeffreys behaves like a uniform prior for 7 < a and a Jeffreys for 7> a.
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T lies in the upper decade of the prior range (10 to 100 mK) to the lowest decade (0.1 to
1 mK). This is given by

W p(T|My, D)dT

1
f().] p(T’Ml,I)dT

= 100. (3.34)

We see that in this case, a uniform prior implies that the line strength is 100 times
more probable to be in the top decade of the predicted range than the bottom, i.e., it is
much more probable that 7'is strong than weak. Usually, expressing great uncertainty
in some quantity corresponds more closely to a statement of scale invariance or equal
probability per decade. In this situation, we recommend using a Jeffreys prior which is
scale invariant.

Jeffreys prior
The form of the prior which represents equal probability per decade (scale invariance)
is given by p(T|M,,I) = k/T, where k = constant.

| 4T 100
/p(T|M1,I)dT:k —:kln10:/ p(TIMy, AT, (3.35)
0.1 o1 T 10

We can evaluate k from the requirement that

Tmax T ax
/ p(T|M,NdT=1= kln( — ) (3.36)
Tmin min

1 Tmax
— =1 . :
;= In <Tmin) (3.37)

Thus, the form of the Jeffreys prior is given by

1
n(Tmax/Tmin) .

p(TIMy, 1) = = (3.38)

A convenient way of summarizing the above comparison between the uniform and
Jeffreys prior is to plot the probability of each distribution per logarithmic interval or
p(In T|M,,I). This can be obtained from the condition that the probability in the
interval 7 to T + dT must equal the probability in the transformed interval In 7" to
In7T+dInT.

p(T\M,, )dT=p(In T|M,,)dIn T

dinT 1
- = 3.39
o = pp(InTIMy 1) (3.39)

p(InT\M\, 1) =T x p(T|My, ).

p(T\My,I)=p(In T|M,, 1)
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Figure 3.4 The left panel shows the probability density function (PDF), p(T|M,,I), for the
uniform and Jeffreys priors. The right panel shows the probability per logarithmic interval
(PPLI), T x p(T\M,,1).

Figure 3.4 compares plots of the probability density function (PDF), p(T|M,, 1)
(left panel), and the probability per logarithmic interval (PPLI), 7' x p(T|M, I) (right
panel), for the uniform and Jeffreys priors.

3.7.2 Calculation of p(D|\M,,T,I)

Let d; represent the measured data value for the ith channel of the spectrometer.
According to model M,

d,‘ = Tf, == éj, (340)

where e; 1s an error term. Our prior information indicates that this error is caused by
receiver noise which has a Gaussian distribution with a standard deviation of o. Also,
from Equation (3.27), we have

2
fi= em{u}. (3.41)

2
207

Assuming M, is true, then if it were not for the error e;, d; would equal 7¥;. Let E; = “a
proposition asserting that the ith error value is in the range e; to e; + de;.” In this case,
we can show (see Section 4.8) that p(D;|M,, T,I) = p(E;|M,, T, I). If all the E; are
independent” then

p(D|M17 T7I) :p(D17D27“‘ 7DN|M15 Tal)
:p(E17E27' .- 7EN|M17 Tvl)
=p(EL[My, T, Dp(Ea|My, T, I) ... p(Ex|My, T, I) (3.42)

4 We deal with the effect of correlated errors in Section 10.2.2.
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Figure 3.5 Probability of getting a data value d; a distance e¢; away from the predicted value is
proportional to the height of the Gaussian error curve at that location.

where [V, stands for the product of N of these terms.From the prior information, we
can write

P(Ei\M,,T,I)=
, (3.43)

It is apparent that p(E;|M,, T, I) is a probability density function since e;, the value of
the error for channel 7, is a continuous variable. The factor (o 271)_1 in the above
equation ensures that the integral over e; from —oo to 400 1s equal to 1. In Figure 3.5,
p(E;|M,, T, I) is shown proportional to the height of the Gaussian error curve at the
position of the actual data value d,.

Combining Equations (3.42) and (3.43), we obtain the probability of the entire data set

N a2
p(D|M1,T,I):H 1 exp{——(dl Tfl)}

joV2n 202

2 (3.44)
= (2n) V2N exp{——Zi(di — ) }

202

In Section 3.7.4, we will need the maximum value of the likelihood given by Equation
(3.44). Since we now know all the quantities in Equation (3.44) except 7, we can
readily compute the likelihood as a function of 7'in the prior range 0.1 < 7' < 100. The
likelihood has a maximum = 8.520 x 10737 (called the maximum likelihood) at
T =1.561 mK.
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What we want is p(D| M, I), the global likelihood of M|, for use in Equation (3.31).
We now evaluate p(D|M;, 1), given by Equation (3.32), for the two different priors
discussed in Section 3.7.1, where we argued that the Jeffreys prior matches much more
closely the prior information given in this particular problem. Nevertheless, it is
interesting to explore what effect the choice of a uniform prior would have on our
conclusions. For this reason, we will do the calculations for both priors.

Uniform prior case:

_N/2 - . max £ £
p(D|M17]):MeXp{TZdzfz}/T dTeXp{TZdlfl}exp{TZd‘f’}
T,

AT o? o? o?

=1.131 x 10738,

min

(3.45)

According to Equation (3.25), we can always write the global likelihood of a model as
the maximum value of its likelihood times an Occam factor, €27, which arises in this
case from marginalizing 7.

p(D|M1,1) :Emax<Ml) x Qr
= maximum value of [p(D|My, T,I)] x Occam factor (3.46)
=8.520 x 1077 Q7.

Comparison of the results of Equations (3.45) and (3.46) leads directly to a value for

the Occam factor, associated with our prior uncertainty in the 7 parameter, of
Qr=0.0133.

Jeffreys prior case:

p(opary = 20 exp{_zdg}

1n(Tmax/Tmin) 202
TS dif; > f%
o / max dT 0.2 20.2
Tmin T
=1.239 x 1077,

In this case the Occam factor associated with our prior uncertainty in the T
parameter, based on a Jeffreys prior, is 0.145. Note: the Occam factor based on the
Jeffreys prior is a factor of &~ 10 less of a penalty than for the uniform prior for the
same parameter.
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3.7.3 Calculation of p(D|M>, )

Model M; assumes the spectrum is consistent with noise and has no free parameters so
in analogy to Equation (3.40), we can write

di=0+e; (3.48)

where e; = Gaussian noise with a standard deviation of 0. Assuming M, is true, then if
it were not for the noise ¢;, d; would equal 0.

2
_ —-N/2 _—N Zdi
p(DIMa, 1) = 22 exp{— -4 }

(3.49)
=1.133 x 10738,

Since this model has no free parameters, there is no Occam factor, so the global
likelihood is also the maximum likelihood, L,x (M>), for M,.

3.7.4 Odds, uniform prior

Substitution of Equations (3.45) and (3.49) into Equation (3.31) leads to an odds ratio
for the uniform prior case given by

1 Tmax TZ dlf; T2 Z](f
odds = Eﬁmin dT exp{ = }exp{—T}. (3.50)
For T, =0.1 mK and 7. = 100 mK, the odds =0.9986 and
1
p(My|D,I)= — =0.4996. (3.51)
I+ 5w

Although the ratio of the maximum likelihoods for the two models favors model M,
by a factor of Lumax(M1)/Lmax(M>) = 8.520 x 10737 /1.131 x 1073 ~ 75, the ratio of
the global likelihoods marginally favors M, because of the Occam factor which
penalizes M| for its extra complexity.

3.7.5 Odds, Jeffreys prior

Substitution of Equations (3.47) and (3.49) into Equation (3.31) leads to an odds ratio
for the Jeffreys prior case, given by

5 o1

. CXp
1 Tmax { 0-2 20-2
odds = / dT

11’1( Tmax/ Tmin) T

For Tiin =0.1mK and T}, = 100 mK, the odds =10.94, and p(M,|D, ) =0.916.

- (3.52)

min
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As noted earlier in this chapter, we consider the Jeffreys prior to be much more
consistent with the large uncertainty in signal strength which was part of the prior
information of the problem. On this basis, we conclude that for our current state of
information, p(M;|D,I) = 0.916 and p(M;|D, I) = 0.084.

3.8 Parameter estimation problem

Now that we have solved the model selection problem leading to a significant
preference for M), which argues for the existence of the short-lived baryon, we
would like to compute p(7T|D, My, I), the posterior PDF for the signal strength.
Again we will compute the result for both choices of prior for comparison, but
consider the Jeffreys result to be more reasonable for the current problem.

Again, start with Bayes’ theorem:

p(T\My,I)p(D|My, T, 1)

p(D|M,, 1) (3.53)
o p(T\My, Dp(D|My, T, 1).

p(T|D7M171):

We have already evaluated p(D|My, T, I) in Equation (3.44). All that remains is to plug
in our two different choices for the prior p(T|M, ).

Uniform prior case:

T - f; T2 .2
p(T|D, M, I) exp{&} exp{— sz’ } (3.54)
o 20
Jeffreys prior case:
1 T> dfi >y f?
p(T|D,M,I) < —exp g exXpq — 2 )i . (3.55)
T o2 202

Figure 3.6 shows the posterior PDF for the signal strength for both the uniform and
Jeffreys priors. As we saw earlier, the uniform prior favors stronger signals.

In our original spectrum, the line strength was comparable to the noise level. How
do the results change as we increase the line strength? Figure 3.7 shows a simulated
spectrum for a line strength equal to five times the noise o together with the estimated
posterior PDF for the line strength. The increase in line strength has a dramatic effect
on the odds which rise to 1.6 x 10'? for the uniform prior and 5.3 x 10'? for the
Jeffreys prior.

3.8.1 Sensitivity of odds to T,

Figure 3.8 is a plot of the dependence of the odds on the assumed value of Ty« for
both uniform and Jeffreys priors. We see that under the uniform prior, the odds are
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Figure 3.6 Posterior PDF for the line strength, 7, for uniform and Jeffreys priors.

much more strongly dependent on the prior range of 7" than for the Jeffreys case. In
both cases, the Occam’s razor penalizing M| compared to M, for its greater complex-
ity increases as the prior range for 7 increases. Model complexity depends not only on
the number of free parameters but also on their prior ranges.

In this problem, we assumed that both the center frequency and line width were
accurately predicted by M ; the only uncertain quantity was the line strength. Suppose
the center frequency and/or line width were uncertain as well. In this case, to compute
the odds ratio, we would have to marginalize over the prior ranges for these para-
meters as well, giving rise to additional Occam’s factors and a subsequent lowering of
the odds. This agrees with our intuition: the more uncertain our prior information
about the expected properties of the line, the less significance we attach to any bump in
the spectrum.

Spectral Line Data
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Figure 3.7 The left panel shows a spectrum with a stronger spectral line. The right panel shows
the computed posterior PDF for the line strength.
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Figure 3.8 The odds ratio versus upper limit on the predicted line strength (7i,.x) for the
uniform and Jeffreys priors.

3.9 Lessons

1. In the model selection problem, we are interested in the global probabilities of the two models

independent of the most probable model parameters. This was achieved using Bayes’
theorem and marginalizing over model M;’s parameter 7, the signal strength (model M,
had no parameters pertaining to the spectral line data). An Occam’s razor automatically
arises each time a model parameter is marginalized, penalizing the model for prior parameter
space that gets ruled out by the data. The larger the prior range that is excluded by the
likelihood function, p(D|M,, T, I), the greater the Occam penalty as can be seen from Figure
3.8. Recall that the global likelihood for a model is the weighted average likelihood for its
parameter(s). The weighting function is the prior for the parameter. Thus, the Occam penalty
can be very different for two different choices of prior (uniform and Jeffreys). The results are
always conditional on the truth of the prior which must be specified in the analysis, and there
is a need to seriously examine the consequences of the choice of prior.

. When the prior range for a parameter spans many orders of magnitude, a uniform prior
implies that it is much more probable that the true value of the parameter is in the upper
decade. Often, a large prior parameter range can be taken to mean we are ignorant of the
scale, i.e., small values of the parameter are equally likely to large values. For these situations,
a useful choice is a Jeffreys prior, which corresponds to equal probability per decade (scale
invariance). Note: when the range of a prior is a small fraction of the central value, then the
conclusion will be the same whether a uniform or Jeffreys prior is used. In the spectrum
problem just analyzed, we started out with very crude prior information on the line strength
predicted by M. Now that we have incorporated the new experimental information D, we
have arrived at a posterior probability for the line strength, p(T|D, M, I). Were we to obtain
more data, D;, we would set our new prior p(7|M,, ;) equal to our current posterior
p(T\D, My, 1), i.e., I, = D,I. The question of whether to use a Jeffreys or uniform prior
would no longer be relevant.
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Figure 3.9 Marginal posterior PDF for the line frequency, where the line frequency is expressed
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a spectrometer channel number.

If the location and line width were also uncertain, we would have to marginalize over these
parameters as well, giving rise to other Occam factors which would decrease the odds still
further. For example, if the prior range for the expected channel number of the spectral line
were increased from less than 1 to 44 channels, the odds would decrease from =~ 11 to 1,
assuming a uniform prior for the line location. We can also compute the marginal posterior
PDF for the line frequency for this case which is shown in Figure 3.9. This permits us to
update our knowledge of the line frequency given the data and assuming the theory is
correct. For further insights on this matter, see the discussion on systematic errors in
Section 3.11.

. Once we established that model M| was more probable, we were able to apply Bayes’

theorem again, to compute the posterior PDF for the line strength. Note: no Occam factors
arise in parameter estimation. Parameter estimation can be viewed as model selection
where the competing models all have exactly the same complexity so the Occam penalties
are identical and cancel out in the analysis. It can happen that the p(7|D, M, I) can be very
small for values of T close to zero. One might be tempted to rule out M, because it predicts
T = 0, thus bypassing the model selection problem. This is not wise, however, because the
model selection analysis includes Occam factors that could rule out M| compared to the
simpler M,. As we noted, these Occam factors do not appear in the parameter estimation
analysis.

. In this toy problem, the spectral line data assume that any background continuum radiation

or instrumental DC level has been subtracted off, which can only be done to a certain
accuracy. It would be better to parameterize this DC level and marginalize over this para-
meter so that the effect of our uncertainty in this quantity (see Section 3.11) will be included in
our final odds ratio and spectral line parameter estimates. A still more complicated version of
this problem is if M, simply predicts a certain prior range for the optical depth of the line but
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leaves unanswered whether the line will be seen in emission or absorption against the back-
ground continuum. In this problem, a Bayesian solution is still possible but will involve a
more complicated model of the spectral line data.

3.10 Ignorance priors

In the analysis of the spectral line problem of Section 3.7.1, we considered two
different forms of prior (uniform and Jeffreys) for the unknown line temperature
parameter. We learned that there was a strong reason for picking the Jeffreys prior in
this problem. What motivated a consideration of these particular priors in the first
place? In this section we will attempt to answer this question.

As we study any particular phenomenon, our state of knowledge changes. When we
are well into the study, our prior for the analysis of new data will be well defined by our
previous posterior. But in the earliest phase, our state of “ignorance” will be high. It is
therefore useful to have arguments to aid us in selecting an appropriate form of prior
to use in such situations. Of course, if we are completely ignorant we cannot even state
the problem of interest, and in that case we have no use for a prior. Let us suppose our
state of knowledge is sufficient to pose the problem but not much more. For example,
we might be interested in the location of the highest point on the equator of Pluto. Are
there any general arguments to help us select a suitable prior? In Section 2.6 we saw
how to use the Principle of Indifference to arrive at a probability distribution for a
discrete set of hypotheses.

In the discussion that follows, we will consider a general argument that suggests the
form of priors to use for two types of continuous parameters. We will make a
distinction between location parameters, and scale parameters. For example, consider
the location of an event in space. To describe this, we must locate the event with
respect to some origin and specify the size (scale) of our units of space (e.g., ft, m, light
years). The location of an event can be either a positive or negative quantity depending
on our choice of origin but the scale (size of our space units) is always a positive
quantity. We will first consider a prior for a location parameter.

Suppose we are interested in evaluating p(X|I), where X = “a proposition asserting
that the location of the tallest tree along the shore of Lake Superior is between x and
X + dx.” In this statement of the problem, x is measured with respect to a particular
survey stake. We will represent the probability density by the function f{x).

What if we consider a different statement of the problem in which the only change is
that the origin of our distance measurement has been shifted by an amount ¢ and we
are interested in p(X’|I) where x’ = x + ¢? If a shift of location (origin) can make the
problem appear in any way different, then it must be that we had some kind of prior
knowledge about location. In the limit of complete ignorance, the choice of prior
would be invariant to a shift in location. Although we are not completely ignorant it
still might be useful, in the earliest phase of an investigation, to adopt a prior which is
invariant to a shift in location. What form of prior does this imply? If we define our
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state of ignorance to mean that the above two statements of the problem are equivalent,
then the desideratum of consistency demands that

p(X|DdX =p(X'|I)dX' = p(X'|)d(X + ¢) =p(X'|I)dX. (3.56)
From this it follows that

Jx) =fx") =f(x + ¢). (3.57)
The solution of this equation is f{x) = constant, so
p(X|I) = constant. (3.58)

In the Lake Superior problem, it is apparent that we have knowledge of the upper
(Xmax) and lower (xnyin) bounds of x, so the constant = 1/(xmax — Xmin)- If wWe are
ignorant of these limits then we refer to p(X]|/) as an improper prior, meaning that it is
not normalized. An improper prior is useable in parameter estimation problems but is
not suitable for model selection problems, because the Occam factors depend on
knowing the prior range for each model parameter.

Now consider a problem where we are interested in the mean lifetime of a newly
discovered aquatic creature found in the ocean below the ice crust on the moon
Europa. We call the lifetime a scale parameter because it can only have positive values,
unlike a location parameter which can assume both positive and negative values. Let
7T = “the mean lifetime is between 7 and 7 + d7.” What form of prior probability
density, p(7 |I), should we use in this case? We will represent the probability density by
the function g(7).

What if we consider a different statement of the problem in which the only change is
that the time is measured in units differing by a factor 3? Now we are interested in p(7”|I)
where 7/ = (7. If we define our state of ignorance to mean that the two statements of the
problems are equivalent, then the desideratum of consistency demands that

P(TINAT = p(T'|[dT' = p(T'\Nd(BT) = B p(T'|1)dT (3.59)

From this it follows that

g(7) =Be(r') = Bg(67). (3.60)
The solution of this equation is g(7) = constant/7, so
constant
p(T|I) = — (3.61)

This form of prior is called the Jeffreys prior after Sir Harold Jeffreys who first
suggested it. If we have knowledge of the upper (7imax) and lower (1) bounds of 7
then we can evaluate the normalization constant. The result is

1

7In (Tmax/Tmin) .

p(T|) =

(3.62)
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Returning to the spectral line problem, we now see another reason for preferring the
choice of the Jeffreys prior for the temperature parameter, because it is a scale
parameter. In Section 9.2.3, we will discover yet another powerful argument for
selecting the Jeffreys prior for a scale parameter.

3.11 Systematic errors

In scientific inference, we encounter at least two general types of uncertainties which
are broadly classified as random and systematic. Random uncertainties can be
reduced by acquiring and averaging more data. This is the basis behind signal aver-
aging which is discussed in Section 5.11.1. Of course, what appears random for one
state of information might later be discovered to have a predictable pattern as our
state of information changes.

Some typical examples of systematic errors include errors of calibration of meters and
rulers,” and stickiness and wear in the moving parts of meters. For example, over time
an old wooden meter stick may shrink by as much as a few mm. Some potential
systematic errors can be detected by careful analysis of the experiment before perform-
ing it and can then be eliminated either by applying suitable corrections or through
careful experimental design. The remaining systematic errors can be very subtle, and are
detected with certainty only when the same quantity is measured by two or more
completely different experimental methods. The systematic errors are then revealed
by discrepancies between the measurements made by the different methods.

Bayesian inference provides a powerful way of looking and dealing with some of
these subtle systematic errors. We almost always have some prior information about
the accuracy of our “ruler.” Clearly, if we had no information about its accuracy (in
contrast to its repeatability), we would have no logical grounds to use it at all except as
a means for ordering events. In this case, we would be expecting no more from our
ruler and we would have no concern about a systematic error. What this implies is that
we require at least some limited prior information about our ruler’s scale to be
concerned about a systematic error.

As we have seen, a unique feature of the Bayesian approach is the ability to incorporate
prior information and see how it affects our conclusions. In the case of the ruler accuracy,
the approach taken is to introduce the scale of the ruler into the calculation as a
parameter, i.e., we parameterize the systematic error. We can then treat this as a nuisance
parameter and marginalize (integrate over) this parameter to obtain our final inference
about the quantity of interest. If the uncertainty in the accuracy of our scale is very large,
this will be reflected quantitatively in a larger uncertainty in our final inference.

In a complex measurement, many different types of systematic errors can occur,
which in principle, can be parameterized and marginalized. For example, consider the

> One important ruler in astronomy is the Hubble relation relating redshift or velocity to distance.
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following modification to the spectral line problem of Section 3.6. Even if we know the
predicted frequency of the spectral line accurately, the observed frequency depends on
the velocity of the source with respect to the observer through the Doppler effect. The
observed frequency of the line, f,, is related to the emitted frequency, f. by

v

fo :fe<1 +—) for - < 1, (3.63)
C C

where v is the line of sight component of the velocity of the line emitting region and ¢
equals the velocity of light. In our search for a spectral line, we may be examining a
small portion of the Orion nebula and only know the distribution of velocities for the
integrated emission from the whole nebula, which may be dominated by turbulent and
rotational motion of its parts. The unknown factor v introduces a systematic error in
our frequency scale. In this case, we might choose to parameterize the systematic error
in v by a Gaussian with a mean and o equal to that of the Orion nebula as a whole.

From the Bayesian viewpoint, we can even consider uncertain scales that arise in a
theoretical model as introducing a systematic error on the same footing, for the
purposes of inference, as those associated with a measurement. In the above example,
we may know the velocity of the source accurately but the theory may be imprecise
with regard to its frequency scale.

Of course, the exact form by which we parameterize a systematic error is con-
strained by our available information, and just as our theories of nature are updated as
our state of knowledge changes, so in general will our understanding of these
systematic errors.

It is often the case that we can obtain useful information about a systematic error
from the interaction between measurements and theory in Bayesian inference. In
particular, we can compute the marginal posterior for the parameter characterizing
our systematic error as was done in Figure 3.9. This and other points raised in this
section are brought out by the problems at the end of this chapter.

The effect of marginalizing over any parameter, whether or not it is associated with a
systematic error, is to introduce an Occam factor which penalizes the model for any prior
parameter space that gets ruled out by the data through the likelihood function. The
larger the prior range that is excluded by the likelihood function, the greater the Occam
penalty. It is thus possible to rule out a valid model by employing an artificially large prior
for some systematic error or model parameter. Fortunately, Bayesian inference requires
one to specify one’s choice of prior so its effect on the conclusions can readily be assessed.

3.11.1 Systematic error example

In 1929, Edwin Hubble found a simple linear relationship between the distance of a
galaxy, x, and its recessional velocity, v, of the form v = Hyz, where H, is known as
Hubble’s constant. Hubble’s constant provides the scale of our ruler for astronomical
distance determination. An error in H, leads to a systematic error in distance
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determination. A modern value of Hy = 70 + 10 km s~' Mpc~!. Note: astronomical
distances are commonly measured in Mpc (a million parsecs). Suppose a particular
galaxy has a measured recessional velocity vy, = (100 & 5) x 10> km s™'. Determine
the posterior PDF for the distance to the galaxy assuming:

1) A fixed value of Hy = 70km s~' Mpc~!.
2) We allow for uncertainty in the value of Hubble’s constant. We assume a Gaussian prob-
ability density function for Hy, of the form

2
p(Ho|I) =ke><p{—w2°xi}, (3.64)

where k is a normalization constant.
3) We assume a uniform probability density function for Hy, given by

| 1/(90 = 50), for 50 < Hy <90
p(Holl) = { 0, elsewhere. (3.65)
4) We assume a Jeffreys probability density function for H, given by
-1
0, elsewhere.
As usual, we can write
Um = Vtrue + € (3.67)

where v 1S the true recessional velocity and e represents the noise component of the
measured velocity, v,,. Assume that the probability density function for e can be
described by a Gaussian with mean 0 and ¢ = 5km s™'. To keep the problem simple,
we also assume the error in v is uncorrelated with the uncertainty in H.

Through the application of Bayes’ theorem, as outlined in earlier sections of
this chapter, we can readily evaluate the posterior PDF, p(x|D,I), for the
distance to the galaxy. The results for the four cases are given below and plotted
in Figure 3.10.

Case 1:

p(x[D, 1) o< p(x|I) p(D|x, 1) = p(x|I)

1 . { &2 }
X [ —
vV 2no P 207
1 (Um - vtrue)z
Voro eXpy — o2 (3.68)

B 1 (U — Hox)?
= p(x|]) mgexp{—Tzo}.

=p(x|)
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Figure 3.10 Posterior PDF for the galaxy distance, x: 1) assuming a fixed value of Hubble’s
constant (Hy), 2) incorporating a Gaussian prior uncertainty for Hy, 3) incorporating a uniform
prior uncertainty for Hy, and 4) incorporating a Jeffreys prior uncertainty for Hj.

Case 2:

In this case, I incorporates a Gaussian prior uncertainty in the value of H.

p(x|D,I):/ dHy p(x,Hy|D,I)

o0

x p(x|I) / dHy p(Holx, ) p(Dlx, Ho, I

—p(aln) [ " dHy p(Ho|D) p(D]x, Ho, 1)

(3.69)
> (Hy — 70)°
:p(X|I) /_OO dH() kexp{— TIOZ
y 1 exp 4 (U — Hyz)®
V2no P 202 .
Case 3:
In this case, I incorporates a uniform prior uncertainty in the value of Hy.
90
p(x|D, 1) o< p(x|D) | dHy p(Ho|I) p(Dlx, Ho, I)
50
(3.70)

%0 1 1 (vm — Hyz)®
=p(x|I dH, exp { —~————"7 4
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Case 4:
In this case, I incorporates a Jeffreys prior uncertainty in the value of Hj.
90
p(x|D, 1) o p(x|I) | dHo p(Ho|I) p(Dlx, Ho, 1)
50
3.71
= p(x|D) " am : L (v — Hyz)” o
—P | g In(90/50) Vare P 252 ‘

Equations (3.68), (3.69), (3.70), and (3.71) have been evaluated assuming a uniform
prior for p(x|I), and are plotted in Figure 3.10. Incorporating the uncertainty in the
scale of our astronomical ruler can lead to two effects. Firstly, the posterior PDF for
the galaxy distance is broader. Secondly the mean of the PDF is clearly shifted to a
larger value. The means of the PDFs for the four cases are 1429, 1486, 1512, and
1556 km s, respectively.

It may surprise you that p(x|D,I) becomes asymmetric when we allow for the
uncertainty in Hy. One way to appreciate this is to approximate the integral by a
weighted summation over a discrete set of choices for Hy. For each choice of H,,
p(x|D, I) is a symmetric Gaussian offset by a distance Ax given by

Ax = - = - | = 3.72
YT Ho+ AH, H, ( Ho + AHO> Ho (3.72)

For AHy= +20km s~' Mpc™!, the bracketed term in Equation (3.72) is equal
to —0.22. For AHyp= —20km s~ Mpc~!, this term is equal to +0.4. Thus, the set of
discrete Gaussians is more spread out on one side than the other, which accounts for
the asymmetry.

3.12 Problems

1. Redo the calculation of the odds for the spectral line problem of Section 3.6 for the
case where there is a systematic uncertainty in the line center of +5 channels.

2. The prior information is the same as that given for the spectral line problem in Section
3.6 of the text. The measured spectrum is given in Table 3.2. The spectrum consists of
64 frequency channels. Theory predicts the spectral line has a Gaussian shape with a
line width o, = 2 frequency channels. The noise in each channel is known to be
Gaussian with a ¢ = 1.0mK and the spectrometer output is in units of mK.

(a) Plot a graph of the raw data.

(b) Compute the posterior probability of M| = “theory 1 is correct, the spectral
line exists,” for the two cases: (1) Jeffreys prior for the signal strength, and
(2) uniform prior. For this part of the problem, assume that the theory predicts
that the spectral line is in channel 24. The prior range for the signal strength is
0.1 to 100 mK. In Mathematica you can use the command NIntegrate to do the
numerical integration required in marginalizing over the line strength.



70

The how-to of Bayesian inference

Table 3.2 Spectral line data consisting of 64 frequency channels obtained with a radio

astronomy spectrometer. The output voltage from each channel has been calibrated in
units of effective black body temperature expressed in mK. The existence of negative

values arises from receiver channel noise which gives rise to both positive and negative

fluctuations.
ch. # mK ch. # mK ch. # mK ch. # mK
1 0.25 17 —0.42 33 0.44 49 —1.56
2 —0.19 18 1.43 34 0.05 50 —0.64
3 0.25 19 —1.33 35 0.59 51 0.48
4 —0.56 20 0.06 36 0.94 52 1.79
5 —-0.41 21 0.82 37 —-0.10 53 0.07
6 —0.94 22 0.42 38 0.57 54 1.30
7 0.84 23 3.76 39 0.40 55 0.29
8 —-0.30 24 1.10 40 —0.97 56 —0.23
9 —2.06 25 1.31 41 2.20 57 —0.50
10 —1.39 26 1.86 42 0.15 58 0.93
11 0.07 27 0.32 43 —0.37 59 —1.28
12 1.80 28 —1.14 44 —0.67 60 —1.98
13 —1.02 29 1.24 45 —0.05 61 1.85
14 —0.46 30 —-0.29 46 —0.20 62 0.89
15 0.29 31 0.02 47 0.65 63 0.65
16 —0.36 32 —1.52 48 —1.24 64 0.28
(c) Explain your reasons for preferring one or the other of the two priors.

(d) On the assumption that the model predicting the spectral line is correct,

(©)

(f)

compute and plot the posterior probability (density function) for the line
strength for both priors.

Summarize the posterior probability for the line strength by quoting the most
probable value and the (4) and (—) error bars that span the 95% credible region
(see the last part of Section 3.3 for a definition of credible region). The credible
region can be evaluated by computing the probability for a discrete grid of
closely spaced line temperature values. Sort these (probability, temperature)
pairs in descending order of probability and then sum the probabilities starting
from the highest until they equal 95%. As each term is added, keep track of the
upper and lower temperature bounds of the terms included in the sum.
Mathematica command Sort|yourdata, OrderedQ[{#2, #1] &];, will sort the
file “yourdata” in descending order according to the first item in each row of
the data list.

Repeat the calculations in (b) and (d), only this time, assume that the prior
prediction on the location of the spectral line frequency is uncertain; it is
predicted to occur somewhere between channels 1 and 50. Assume a uniform
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prior for the unknown line center.” This will involve computing a two-
dimensional likelihood distribution in the variables line frequency and line
strength for a discrete set of values of these parameters, and then using a
summation operation to approximate integration’ (you will probably find
Nlntegrate too slow in two dimensions), for marginalizing over both para-
meters to obtain the global likelihood for computing the odds. For this
purpose, you can use a line frequency interval of 1 channel and a signal
strength interval of 0.1 mK for 100 intervals. Although this only spans the
prior range 0.1 to 10 mK the PDF will be so low beyond 10 mK that it will not
contribute significantly to the integral.

(g) Calculate and plot the marginal posterior probabilities for the line frequency.

(h) What additional Occam factor is associated with marginalizing over the prior
line frequency range?

3. Plot p(x|D, I) for case 4 (Jeffreys prior) in Section 3.11.1, assuming

1
pGMD={§MWW’ﬂ”mSE“S% (3.73)

, elsewhere.

Box 3.1
Equation (3.69) can be evaluated using Mathematica.
The evaluation will be faster if you compute a Table of values for
p(x, Hy|D, I) at equally spaced intervals in x, and use
Nlntegrate to integrate over the given range for Hj.

p(x|D, I) o< Table [

Nlntegrate 71 ex —(vm — xH0)2 {H,, 60,80}
X, - ) ) ) )
. Hyv2rn o P 202 !

{x,800,2200,50}]

S Note: when the frequency range of the prior is a small fraction of center frequency, the conclusion will be the same
whether a uniform or Jeffreys prior is assumed for the unknown frequency.
7 A convenient way to sum elements in a list is to use the Mathematica command Plus@ @list.



